The Simplex Algorithm is NP-mighty
نویسندگان
چکیده
We propose to classify the power of algorithms by the complexity of the problems that they can be used to solve. Instead of restricting to the problem a particular algorithm was designed to solve explicitly, however, we include problems that, with polynomial overhead, can be solved ‘implicitly’ during the algorithm’s execution. For example, we allow to solve a decision problem by suitably transforming the input, executing the algorithm, and observing whether a specific bit in its internal configuration ever switches during the execution. We show that the Simplex Method, the Network Simplex Method (both with Dantzig’s original pivot rule), and the Successive Shortest Path Algorithm are NP-mighty, that is, each of these algorithms can be used to solve any problem in NP. This result casts a more favorable light on these algorithms’ exponential worst-case running times. Furthermore, as a consequence of our approach, we obtain several novel hardness results. For example, for a given input to the Simplex Algorithm, deciding whether a given variable ever enters the basis during the algorithm’s execution and determining the number of iterations needed are both NP-hard problems. Finally, we close a long-standing open problem in the area of network flows over time by showing that earliest arrival flows are NP-hard to obtain.
منابع مشابه
Scheduling Single-Load and Multi-Load AGVs in Container Terminals
In this paper, three solutions for scheduling problem of the Single-Load and Multi-Load Automated Guided Vehicles (AGVs) in Container Terminals are proposed. The problem is formulated as Constraint Satisfaction and Optimization. When capacity of the vehicles is one container, the problem is a minimum cost flow model. This model is solved by the highest performance Algorithm, i.e. Network Simple...
متن کاملAn Efficient Extension of Network Simplex Algorithm
In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...
متن کاملOptimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کاملAugmented Downhill Simplex a Modified Heuristic Optimization Method
Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...
متن کاملA new network simplex algorithm to reduce consecutive degenerate pivots and prevent stalling
It is well known that in operations research, degeneracy can cause a cycle in a network simplex algorithm which can be prevented by maintaining strong feasible bases in each pivot. Also, in a network consists of n arcs and m nodes, not considering any new conditions on the entering variable, the upper bound of consecutive degenerate pivots is equal $left( begin{array}{c} n...
متن کامل